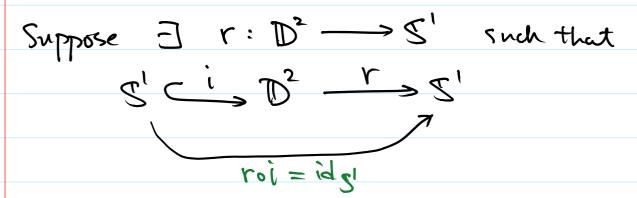
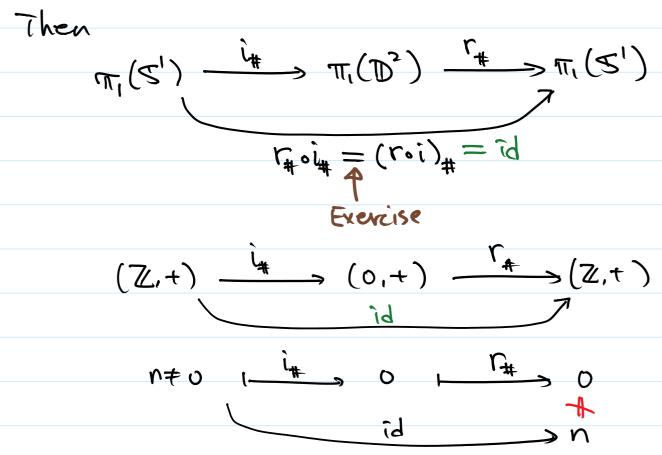
L36 April 16 Fixed Pt

Thursday, April 16, 2015 2:12 PM

Recall several facts Theorem Let X. Y be path connected $f: (X, x_*) \longrightarrow (Y, y_*)$ be continuous Then for : Tr (X, xo) -> Tr (Y, yo) is a honomorphism when & Ith fox Obviously, we used $\alpha_0 \simeq \alpha_1 \Longrightarrow f \cdot \alpha_0 \simeq f \cdot \alpha_1$ and $f_{\circ}(\alpha * \beta) = (f_{\circ}\alpha) * (f_{\circ}\beta)$ Fact. $\pi_1(S') = \mathbb{Z}$, $\pi_1(\mathbb{D}^2)$ is trivial where $S' = \{ |z| = 1 \} \subset D^2 = \{ |z| \le 1 \}$ Theorem. S is never a retract of D2 The proof makes use of TT, In general, 5ⁿ⁻¹ is never a retract of D' by using high dimensional algebraic topology Thursday, April 16, 2015

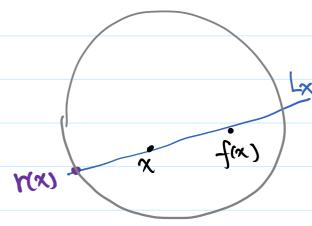
2:12 PM





Browner Fixed Point Theorem

Any continuous map $f: D^n \longrightarrow D^n$ must have a fixed point, Suppose not, then $\forall x \in D^n f(x) \neq x$ $\exists \text{ Straight line } L_x = \{(i-t)x + t f(x): t \in \mathbb{R}\}$

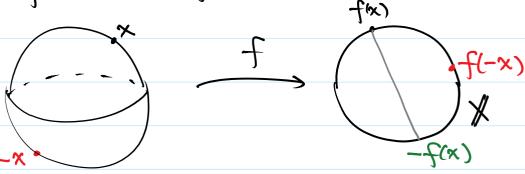


Then $r: \mathbb{D}^n \longrightarrow \mathbb{S}^{n-1}$ with $r|_{\mathbb{S}^{n-1}} = id_{\mathbb{S}^{n-1}}$ a retract of \mathbb{D}^n contradiction

Borsuk- Ulam Theorem

This makes 5n-1

There is no continuous $f: S^n \longrightarrow S^{n-1}$ with f(-x) = -f(x)



The proof wakes use of projective space For N=2, assume their exists such f T^2 f T^1 Then f is defined

$$f(x) \mapsto f(x)$$

$$f(x) \mapsto f(x)$$

Thursday, April 16, 2015 2

2:55 PM

$$(0,t) = \pi_{1}(S^{2}) \xrightarrow{f_{\pm}} \pi_{1}(S') = (Z,t)$$

$$\begin{cases} Z_{2},t = \pi_{1}(P^{2}) & f_{\pm} = \pi_{1}(P^{2}) = \pi_{1}(S') = (Z,t) \end{cases}$$
By Algebra, $\hat{f}_{\pm} = 0$ (Exercise)

But we can create a loop $\alpha: [0,1] \rightarrow \mathbb{P}^{2}$
which has for non-trivial in S'

Hairy-Ball Theorem

Every vector field on 5²ⁿ has a zero.

Ham-Sandwich Theoren

Let A_1, A_2, \dots, A_n be bounded measurable sets in \mathbb{R}^n . Then \exists hyperplane which divide all A_j into half measure.